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Maneuver analysis for the lunar-swingby phase of the Microwave
Anisotropy Probe mission trajectories is presented. This phase spans from
launch to the lunar swingby; maneuvers after the swingby are ignored. The
analysis is complicated by the need to replicate the nominal trajectory in a
different design tool. The results of this trajectory replication are presented,
followed by the results of monte-carlo maneuver simulations. The results are
subject to two important assumptions: that linearization is valid (as the software
used for the monte-carlo simulation, LAMBIC, is based on a linearization of the
trajectory about the nominal) and that the planned human-in-the-loop lunar
targeting may be approximated by targeting to a fixed aimpoint.

INTRODUCTION

The Microwave Anisotropy Probe (MAP) project is part of NASA’s Explorers
program. Trajectories for MAP use a series of phasing loops to attain a lunar swingby
that places the spacecraft into an orbit about the Earth-Sun L2 point. [1] Depending upon
the launch date, three or five phasing loops may be used. In either case, the project’s plan
is to use mostly-deterministic correction maneuvers at the first and last perigees (labeled
P1 and Pf, respectively) followed by a correction maneuver (PfCM) about 18 hours after
Pf to ensure a lunar swingby that leads to an lissajous orbit that meets mission
constraints.

The analysis described below is purely a study of maneuver targeting and the
required AV. Trajectory analysis had been performed at Goddard Space Flight Center
using Astrogator, but the Monte Carlo maneuver analysis was performed at the Jet
Propulsion Laboratory (JPL) using JPL’s DPTRAJ and LAMBIC software tools.
DPTRAJ [2] was used to reproduce nominal trajectories and compute partial derivatives.
LAMBIC was used to perform Monte-Carlo maneuver analyses. LAMBIC [3] uses
linear propagation to model trajectory deviations. In other words, the effects of
maneuvers are modeled with partial derivatives, as follows:

K Av, +KAv, + K;Av, + ... = Ab,

where Ab is a vector of changes in the target parameters; K, are K-matrices, matrices of
partial derivatives; and Av, are the maneuver delta-v’s. The partial derivatives, K-
matrices, are supplied in a file from DPTRAJ called a K-file. The propagation options
for LAMBIC are, therefore, limited only by the options in DPTRAJ for producing K-
files.

LAMBIC may also optimize maneuver designs. Such designs are optimized on a
per-sample basis with OD and execution errors ignored. The cost function is a sum of



AV magnitudes. In LAMBIC’s simulation, maneuvers account for OD errors, AV, =
K"(Abdesign+Abod), and AV errors are accounted for with a Gates model [4] for maneuver
execution, AV, =AV oo HAVerg,-

The MAP project plans to adjust the aimpoint for the lunar swingby in order to
achieve mission goals. This adjustment will be made by engineering judgement and is,
therefore, impossible to model in LAMBIC. However, assuming this adjustment is small,
a maneuver strategy that achieves the nominal aimpoint should give a fair representation
of the AV cost for this portion of the mission.

Two cases have been studied: a three-loop case reflecting launch on May 4%, 2001
and a five-loop case reflecting launch on April 18", 2001. The three-loop trajectory is
plotted in Figure 1 and the five-loop in Figure 2. The approach used for each case is
essentially identical, but the differences in the results are important.

Assumptions

The primary assumptions are high-level and as follows: linear approximation is
valid and targeting to the nominal lunar swingby aimpoint is a fair representation of the
project’s strategy. The latter assumption has been made because engineering judgement
cannot be modeled with software such as LAMBIC, although this targeting choice seems
to be a reasonable compromise.
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Figure 1: Trajectory for launch in May, 2001; in Sun-Earth rotating frame,
scale: 1=100,000 km.

For representing injection errors, two different models were book-kept. The first
was a Gates-model for injection AV execution errors and the second was a 6-by-6
covariance matrix (listed in the appendix). This injection AV execution error model
consisted of a magnitude error of 11.6 m/s and a pointing error of 2 degrees, at the three-
sigma level for both.



Trajectory-Correction-Maneuver (TCM) execution errors for Al, P1, Pf, and
PfCM were taken to be 5% magnitude and 5 degrees pointing at the three-sigma level,
per project requirements. Orbit Determination (OD) uncertainties were specified as 300
meters and 10 mm/s at the three-sigma level. These OD uncertainties were applied to the
state at the data cut-off time for each maneuver design.

Analysis Approach

DPTRAJ has a capability to produce a file, called a K-file, of partial derivatives
(K-matrices) that relate maneuver AV to encounter target conditions. This file is used by
LAMBIC. Neither DPTRAIJ nor LAMBIC currently has an option to modify these
matrices to account for maneuver times that follow some trajectory event, viz. maneuvers
that are planned to occur at perigee or apogee. As this effect is important to these cases,
the DPTRAJ K-file had to be manually altered to account for it. (see appendix)

The LAMBIC software offers many options for simulating maneuvers.
Unfortunately, the split-maneuver strategy that MAP plans to use is not one of the
options. For the three-loop, the LAMBIC strategy chosen as the closest match to MAP’s
was the following: choose the P1 maneuver such that the sum of P1 AV and Pf AV
magnitudes is a minimum, target the Pf maneuver to the nominal lunar swingby BeR &
B-T ignoring the time of closest approach, and target PfCM to the same aimpoint as Pf.

For the five-loop, the LAMBIC strategy chosen as the closest match to MAP’s
was the following: choose the A1 maneuver such that the sum of A1, P1, and Pf AV
magnitudes is a minimum and that the P1 altitude is greater than 510 km; choose the P1
maneuver such that the sum of P1 and Pf AV magnitudes is a minimum,; target the Pf
maneuver to the nominal lunar swingby BeR & BT ignoring the time of closest
approach; finally target PfCM in the same manner as Pf.

These strategies, like the MAP team’s maneuver design strategy in Astrogator,
have flexibility in the time of lunar closest-approach. The amount of variation in the
closest-approach time is indicated by the variation in the linearized time-of-flight (LFT),
quoted in the simulation results, below.

Note that although there was some initial consideration of a strategy that would
allow LAMBIC to pick a lunar-swingby aimpoint such that a future Cartesian state be
near the L2 point, this strategy was rejected. LAMBIC uses partial derivatives to linearly
propagate the trajectory and this linear propagation does not have enough accuracy over
such an arc to inspire confidence in the results. Furthermore, no attempt has been made
to estimate the AV required to attain an L2 orbit based on the lunar delivery statistics in
the Monte Carlo analysis.
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Figure 2: Trajectory for launch in April, 2001; in Sun-Earth rotating frame,
scale: 1=100,000 km.

At the same time, the strategy presented here only attempts to return to the
nominal lunar swingby aimpoint. The MAP navigation team plans to adjust this aimpoint
to achieve mission goals. This discrepancy between the LAMBIC strategy and the MAP
navigation strategy cannot be resolved because the latter is human-in-the-loop.

SIMULATION IN DPTRAJ

As the trajectories had to be reproduced in DPTRAJ in order to compute the
necessary partial derivatives for LAMBIC, a comparison of results is relevant. For both
launch cases, three different trajectory simulations from Astrogator were available:
nominal launch, a +3-sigma magnitude error (11.6 m/s) on the AV from the third stage,
and a —3-sigma magnitude error on the AV from the third stage. Aspects of these
trajectories that are important in this report are listed in Table 1 and Table 2. The
trajectory designs have been optimized for the +3-sigma magnitude error, which is why
the total AV for this case is the least.

It is important to note the strategy by which the trajectories were designed using
Astrogator. The P1 and Pf maneuvers were constrained to act along the local velocity
directions. The desired B*R and B*T of the lunar swingby are matched by appropriately
choosing the magnitudes of these maneuvers. In the five-loop case, a maneuver has been
placed at A1 to satisfy a lower-bound on the perigee altitude of 510 km. These
maneuvers were determined in a different manner under DPTRAJ’s trajectory-search
software.

The trajectory-search software in DPTRAJ is named SEPV. SEPV does not offer
the exact same feature set for searching-in maneuver AV as Astrogator. However this is
only a trajectory replication problem, not an optimization problem. For the three-loop
case launching in May, reasonable agreement was found by allowing additional small



AV’s: one near injection and another at Al. The Pf (P3 for the May 4™ case) maneuver
AV was copied from the Astrogator output file and input to DPTRAJ as a fixed AV. The
near-injection AV was searched-in to match the Cartesian position at Al. The P1 AV was
searched-in to match the Cartesian position at A2. A P2 AV was searched-in to match the
BeR and B*T of the lunar swingby. For the five-loop case launching in April, the P1
maneuver AV was copied from the Astrogator output and input to DPTRAJ as a fixed
AV. The Al AV was searched-in to match the Cartesian position at P1. The Pf AV (P5
for April 18" case) was searched-in to match the Cartesian state listed in Astrogator’s
output, in Earth’s mean equator of J2000.0 (EME2000), at the time of the lunar swingby.

Table 1. Three-Loop (May 4" launch) Trajectory Characteristics (Astrogator).
Times are UTC; B*R, B*T in EME2000.

-3-sigma Nominal +3-sigma
Injection AV | 3,088.8 m/s 3,100.4 m/s 3,112.0 m/s
Al epoch 7-May 12:30:57 7-May 23:43:29 8-May 13:47:37
P1 epoch 10-May 12:46:44 11-May 11:10:49 12-May 15:31:01
P1 AV 32.6650 m/s 15.427 m/s 4.744 m/s
A2 epoch 14-May 21:43:33 15-May 14:56:24 16-May 12:45:46
P2 epoch 19-May 06:48:12 19-May 18:47:52 20-May 10:04:51
A3 epoch 23-May 16:05:08 23-May 22:41:32 24-May 07:16:36
P3 epoch 28-May 01:31:30 28-May 02:45:06 28-May 04:37:58
P3 AV 8.1423 m/s 12.844 m/s 19.404 m/s
Moon TCA 2-Jun 05:51:31 2-Jun 06:05:11 2-Jun 06:32:50
Moon B°R -253.58 km -306.97 km -398.47 km
Moon BT 7,324.7 km 7,526.4 km 7,738.0 km
Moon V,, 0.87352 km/s 0.86282 km/s 0.85433 km/s

The trajectories from Astrogator accounted for the gravitational attraction of the
Sun, Moon, and Jupiter as point masses. For Earth’s gravity, a 21-by-21 JGM-2 model
[5] was used. Solar radiation pressure was modeled. Numerical integration was by the
Runge-Kutta-Verner 8(9) method.

Two different simulations were run in DPTRAJ, one to produce partial derivatives
for LAMBIC, and a second to match the Astrogator trajectory. The latter used a 21-by-
21 JGM-2 for Earth; all gravitational influences but Earth, Moon, Sun, and Jupiter were
neglected; and solar radiation pressure was modeled. The former used a 2-by-2 JGM-3
model [6] for Earth’s gravity, no planet’s gravity was neglected, and solar radiation
pressure was not modeled.

As an additional verification, the +3-sigma launch case was reproduced in
DPTRAJ using the former modeling strategy (2-by-2 JGM-3, no planets neglected, and
solar pressure not modeled). In this case, the trajectory was only searched-in up to the
lunar swingby.



Of course, because of implementation issues, the modeling can never be quite the
same for DPTRAJ and Astrogator; but this does not mean the results of the comparison
are less valuable. Selected trajectory characteristics are compared in Tables 3 through 6.
These results indicate that DPTRAJ and Astrogator are simulating essentially the same

trajectory.

Table 2. Five-Loop (April 18" launch) Trajectory Characteristics (Astrogator).

Times are UTC; B*R, B*T in EME2000.

-3-sigma Nominal +3-sigma
Injection AV | 3,088.9 m/s 3,100.5 m/s 3,112.1 m/s
A1l epoch 21-Apr 11:13:27 21-Apr 21:41:45 22-Apr 11:07:21
A1 AV 7.9701 m/s 6.9504 m/s 5.4143 m/s
P1 epoch 24-Apr 09:47:18 25-Apr 06:44:26 26-Apr 09:35:34
P1 AV 24436 m/s 11.384 m/s 0.18219 m/s
A2 epoch 28-Apr 08:43:13 29-Apr 03:56:45 30-Apr 06:53:17
P2 epoch 2-May 07:38:46 3-May 01:07:57 4-May 04:08:04
A3 epoch 7-May 02:14:33 7-May 11:17:45 8-May 06:50:07
P3 epoch 12-May 12:04:54 11-May 18:48:57 12-May 09:27:54
A4 epoch 15-May 22:22:36 16-May 02:57:37 16-May 12:52:57
P4 epoch 20-May 08:45:53 20-May 11:11:29 20-May 16:23:10
AS epoch 24-May 18:52:54 24-May 19:08:53 24-May 19:36:11
PS5 epoch 29-May 05:17:28 29-May 03:23:21 28-May 23:00:52
P5 AV 13.692 m/s 13.795 m/s 13.410 m/s
Moon TCA 1-Jun 19:50:06 1-Jun 21:59:32 2-Jun 00:14:03
Moon B*R -3,866.1 km -2,272.9 km -1,277.5 km
Moon BT 12,786 km 12,723 km 12,775 km
Moon V., 0.83125 km/s 0.81414 km/s 0.82732 km/s

Table 3. Three-Loop Trajectory Comparison, Nominal Launch. Times in UTC.

Astrogator DPTRAJ JGM-2 DPTRAJ JGM-3 2x2
Injection AV | 3,100.4 m/s 3100.4 3100.4 m/s
Al epoch 7-May 23:43:29 7-May 23:43:30 7-May 23:43:25
P1 epoch 11-May 11:10:49 11-May 11:10:51 11-May 11:10:40
P1 AV 15.427 m/s 15.477 m/s 16.455 m/s
A2 epoch 15-May 14:56:24 15-May 14:56:29 15-May 14:56:08
P2 epoch 19-May 18:47:52 19-May 18:47:60 19-May 18:47:26
P2 AV N/A 0.0 m/s 0.681 m/s
A3 epoch 23-May 22:41:32 23-May 22:41:42 23-May 22:41:03
P3 epoch 28-May 02:45:06 28-May 02:45:18 28-May 02:44:30
P3 AV 12.844 m/s 12.844 m/s 12.844 m/s
Moon TCA 2-Jun 06:05:11 2-Jun 06:05:13 2-Jun 06:05:05




Table 4: Three-Loop Trajectory Comparison, +3-Sigma Case. Times are UTC.

Astrogator DPTRAJ JGM-3 2x2
Injection AV | 3,112.0 m/s 3,112.1 m/s
Al epoch 8-May 13:47:37 8-May 13:47:32
P1 epoch 12-May 15:31:01 12-May 15:30:49
P1 AV 4.744 m/s 4.752 m/s
A2 epoch 16-May 12:45:46 16-May 12:45:27
P2 epoch 20-May 10:04:51 20-May 10:04:22
P2 AV N/A 0.346 m/s
A3 epoch 24-May 07:16:36 24-May 07:16:04
P3 epoch 28-May 04:37:58 28-May 04:37:19
P3AV 19.404 m/s 19.404 m/s
Moon TCA 2-Jun 06:32:50 2-Jun 06:32:38

Table 5. Five-Loop Trajectory Comparison, Nominal Launch. Times are UTC.

Astrogator DPTRAJ JGM-2 DPTRAJ JGM-3
Al epoch 21-Apr 21:41:45 21-Apr 21:41:45 21-Apr 21:41:31
A1 AV 6.9504 m/s 6.9570 m/s 6.9582 m/s
P1 epoch 25-Apr 06:44:26 25-Apr 06:44:26 25-Apr 06:44:26
P1AV 11.384 m/s 11.384 m/s 11.384 m/s
A2 epoch 29-Apr 03:56:45 29-Apr 03:56:57 29-Apr 03:56:26
P2 epoch 3-May 01:07:57 3-May 01:08:23 3-May 01:07:21
A3 epoch 7-May 11:17:45 7-May 11:18:39 7-May 11:17:04
P3 epoch 11-May 18:48:57 11-May 18:50:34 11-May 18:48:11
A4 epoch 16-May 02:57:37 16-May 02:59:58 16-May 02:56:45
P4 epoch 20-May 11:11:29 20-May 11:14:36 20-May 11:10:29
AS epoch 24-May 19:08:53 24-May 19:12:40 24-May 19:07:48
PS5 epoch 29-May 03:23:21 29-May 03:27:53 29-May 03:22:10
PS AV 13.795 m/s 14.762 m/s 13.813 m/s
Moon TCA 1-Jun 21:59:32 1-Jun 21:59:40 1-Jun 21:59:32




Table 6: Five-Loop Trajectory Comparison, +3-Sigma Case. Times are UTC.

Astrogator DPTRAJ JGM-3
A1l epoch 22-Apr 11:07:21 22-Apr 11:07:00
A1 AV 5.4143 m/s 5.4209 m/s
P1 epoch 26-Apr 09:35:34 26-Apr 09:35:34
P1 AV 0.18219 m/s 0.18219 m/s
A2 epoch 30-Apr 06:53:17 30-Apr 06:52:57
P2 epoch 4-May 04:08:04 4-May 04:07:24
A3 epoch 8-May 06:50:07 8-May 06:49:12
P3 epoch 12-May 09:27:54 12-May 09:26:47
A4 epoch 16-May 12:52:57 16-May 12:51:37
P4 epoch 20-May 16:23:10 16-May 16:21:36
AS epoch 24-May 19:36:11 24-May 19:34:25
PS epoch 28-May 23:00:52 28-May 22:58:54
PS5 AV 13.410 m/s 13.483 m/s
Moon TCA 2-Jun 00:14:03 2-Jun 00:14:02
THREE-LOOP TRAJECTORY

Linearization vs. Astrogator Results

Because of the linearization, in order to accept results from LAMBIC it is
important to compare them to results from Astrogator. This may be done through
LAMBIC’s deterministic, or single-sample, mode. By specifying the +3-sigma and —-3-
sigma injection magnitude errors, this single-sample mode gives results that may be
compared to the Astrogator results. Such a comparison is made in Table 7. One should
note that there are two principle reasons for the differences: LAMBIC uses a linear
approximation to compute the maneuvers and is computing these maneuvers such that the
sum of the AV magnitudes is a minimum (in addition to the constraint of achieving
specified BT and BeR values at the Moon).

Table 7: Deterministic LAMBIC results vs. Astrogator output

MVR +3 sigma -3 sigma
Astrogator | LAMBIC Astrogator | LAMBIC

P1 4.74 m/s 3.58 m/s 32.7 m/s 34.3 m/s

Pf 19.4 m/s 15.5 m/s 8.14 m/s 10.5 m/s

A table of P1 and Pf maneuver AV’s as a function of injection AV magnitude
error, produced using Astrogator, was also available. With the K-file in-hand, it is
straightforward to produce linear approximations for the same maneuver strategy.

Figure 3, below, shows this linear approximation overlaid on the Astrogator results. This
figure is a comparison of linear and nonlinear solutions for the same maneuver strategy.



Figure 3 demonstrates very good agreement for the P1 maneuver, but only
moderate agreement for the P3 (Pf) maneuver. Since the variation in the P3 AV appears
to be linear, one may question this result. The inset blow-up for P3 AV shows that the
linearized model may fit well very close to the origin but only fits moderately well
beyond. Unfortunately, a finer spacing of Astrogator results was not available.

Simulation Results

For all simulations reported on below, LAMBIC performed a 5000 sample Monte
Carlo analysis. In addition to mean values, LAMBIC can produce AV tabulations at any
given percentile level; for the Nth percentile level, there is an N% chance that the actual
AV magnitude will be smaller. In order to clearly show how the individual models affect
the estimate of required AV, a progression of solutions is presented, beginning with
maneuvers that compensate for only the injection error.

Two different specifications were given for the injection dispersion. The first was
11.6 m/s (3-6) magnitude error and 2° (3-0) pointing error. The second was a full-state
covariance for the five-loop April-18" trajectory. Results for the former are given in
Table 8 and for the latter in Table 9. Accounting for OD error does not influence the
results much, even at the 99® percentile. On the other hand, the maneuver execution error
has great influence on the results, primarily because execution errors can’t be corrected
until the Pf maneuver. The Pf maneuver is at the final perigee and, as such, has much
less maneuver capability than, say, a maneuver at P2. No simulations with a P2
maneuver have been made, but one should expect use of a maneuver at P2 to lower the
total AV cost.
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Figure 3. Linearization and Astrogator Comparison. Inset is a blow-up in the region
(-0.2 m/s to 0.2 m/s) in injection AV by (12.6 m/s to 13 m/s) in P3 AV



Table 8: LAMBIC Results for Injection Error Dispersion (11.6 m/s, 2° 3-6). Results
are given in m/s. Mean AV is listed as W, standard deviation (1-6) as ¢, and the 99
percentile level is listed under 99%.

Injection +

MVR Injection Injection + Injection +
OD Error Execution Error Execution Error +
OD Error

u G | 9% u 9 99% u o 99% U G | 99%

P1 16.6 {695 |353 |16.6 |695 (354 [16.6 [696 |353 |16.6 [6.96 |353
Pf 13.1 |1.82 [17.3 {133 [1.83 {179 (179 |[7.60 |48.6 | 180 |7.61 |49.8
PfECM |[0.0 0.0 0.0 051 {029 136 |1.99 (2.07 {105 |2.13 |2.04 | 104
Total 206 {643 |47.6 {304 |647 (490 [36.5 [13.2 |84.1 |36.7 |13.1 | 83.8

It is also important to take note of the delivery dispersion at the lunar swingby,
because this analysis assumes that a maneuver strategy that arrives at the correct lunar B-
plane aimpoint is representative of one that will also deliver the spacecraft to an
appropriate orbit around L2. This assumption must be made because the MAP team will

choose a new swingby aimpoint during flight operations based on engineering

judgement; this cannot be modeled in LAMBIC. The assumption will be valid, for
example, if‘the chosen aimpoint is close to the nominal or if a delivery to the nominal
aimpoint could be followed by a post-lunar-swingby maneuver to achieve the desired L.2
orbit. Note that no attempt has been made here to estimate the AV required of such a

mancuver.

Table 9: LAMBIC Results for Injection Covariance. Results are given in m/s. Mean
AV is listed as u, standard deviation (1-6) as o, and the 99 percentile level is listed

under 99%.
MVR Injection Injection + Injection + Injection +
OD Error Execution Error Execution Error +
OD Error
U c 99% v o 99% u o) 99% n c 99%
P1 15,6 | 538 [28.2 |156 |538 (283 |156 |539 (283 [156 |539 [283
Pf 13.0 {1.11 | 154 |13.2 |1.14 | 156 {169 |527 {367 |17.1 [539 |37.8
PECM |00 0.0 0.0 051 (029 (137 |1.87 |1.80 [882 [2.03 |1.81 |9.00
Total 285 (493 1402 1293 497 |41.2 344 948 | 653 |34.7 [|9.56 |67.2

The lunar delivery dispersions reported by LAMBIC are listed in Table 10, for the
full injection covariances. The full delivery covariance is listed in the appendix but these
standard deviations give a sense of the delivery. The SeR and SeT entries represent
angular displacements of the hyperbolic approach hyperbola in the R and T directions.
The C3 variation may be converted to V. with the following formula: V. = dC3/(2*
V..). The nominal V. is about 0.863 km/s, so a standard deviation of 0.001 km?s? for C3
means V., has a standard deviation of about 0.58 m/s. The LTF entries represent
linearized time-of-flight, which is the (hypothetical) rectilinear time-to-go from the
current spacecraft position to the center of the target body; the standard deviation of LTF
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is usually quite close to the standard deviation of time-of-closest approach. The equation
for computing LTF is given, below:

2
(FL - Sinh(FL)) where cosh(F,) =1+ Ve

1-T, =
u

AR~

where T, is LTF, ¢ is the current time, y is the gravitational parameter, r is radius, v, is v-
infinity, and F, is a parameter defined as stated.

Table 10: LAMBIC Lunar B-Plane Delivery Standard Deviations (1-0) for Injection

Covariance.
MVR Injection Injection + Injection + Injection +
OD Error Execution Error | Execution Error
+ OD Error

B*R 0.00 0.922 km 20.3 km 21.4 km
BT 0.00 2.57 km 37.8 km 40.2 km
LTF 487 s 505s 487 s 505s
SR 3.95 mrad 3.98 mrad 4.35 mrad 4.38 mrad
SeT 15.0 mrad 15.3 mrad 21.2 mrad 21.4 mrad
C3 9.00e-3 km?/s? 9.04e-3 km?/s* 9.97e-3 km?/s* 1.00e-2 km%/s?

20 mrad = 1.15 degrees

FIVE-LOOP TRAJECTORY

Linearization vs. Astrogator Results

The results from LAMBIC are listed in Table 11. Unfortunately, no suitable
results from Astrogator were available for comparison. Note that the three Astrogator
trajectories for which results are listed in Table 2 do not achieve identical lunar swingby
aimpoints and, as such, cannot be used here. The similarities between the AV
magnitudes listed in Table 11 and those in Table 2 are, however, encouraging.

Table 11: Linearized Modeling of LAMBIC

MVR -3 sigma Nominal +3 sigma
Al 8.18 m/s 6.96 m/s 5.73 m/s
P1 23.6 m/s 11.4 m/s 787 m/s
Pf 16.6 m/s 13.8 m/s 11.0 m/s

No claim is being made here as to the linear range of this problem. There are,
however, reasons to be suspicious. For example, referring to the cases represented in
Table 2, the +3-sigma case has a much greater perturbation due to the Moon just before
A3 than the nominal case does.
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Simulation Results

Again, for all simulations reported on below, LAMBIC performed a 5000 sample
Monte Carlo analysis. And, the same two injection dispersions were used as for the
three-loop. Results for the (11.6 m/s, 2° 3-0) dispersion are given in Tables 12-14 and
for the full 6x6 covariance in Tables 15-17. These results also include simulations of a
maneuver at A2 and another at P2.

Accounting for OD error influences the results more than it did for the three-loop
trajectory, especially at the 99 percentile. On the other hand, the maneuver execution
error has even greater influence on the results, primarily when execution errors aren’t
corrected until the Pf maneuver. This influence is much larger than in the three-loop case
simply because there are two more loops between P1 and Pf. The Pf maneuver is at the
final perigee and, as such, has much less maneuver capability than, say, a maneuver at A2
or P2. This difference is illustrated by the simulations that include A2 and P2, seen in
Tables 13, 14, 16, and 17. In fact, adding a maneuver at A2 brings the 99" percentile AV

near the value seen for the three-loop.

The lunar delivery dispersions reported by LAMBIC are listed in Tables 18-20.
Full delivery covariances are listed in the appendix, but these standard deviations give a
sense of the delivery. The SR and S*T entries represent angular displacements of the
hyperbolic approach hyperbola in the R and T directions. The C3 variation may be
converted to V_ with the following formula: 8V, = 8C3/(2* V_). The nominal V_, is
about 0.814 km/s, so a standard deviation of 0.01 km?/s* for C3 means V_, has a standard

deviation of about 6.1 m/s.

Table 12: LAMBIC Results for Injection Error Dispersion (11.6 m/s, 2° 3-0).
Results are given in m/s. Mean AV is listed as i, standard deviation (1-6) as o, and the
99™ percentile level is listed under 99%.

MVR Injection Injection + Injection + Injection +
OD Error Execution Error Execution Error +
‘ OD Error
n c 99% u c 99% n c 99% H c 99%
Al 695 [ .431 |7.95 |6.95 |.431 |795 [695 | .444 |8.00 |6.95 | .444 | 8.00
P1 114 1402 |20.6 [114 {402 206 (114 |4.03 |20.7 |11.4 |4.03 |20.8
Pf 13.8 1938 | 159 {234 103 |571 (453 |34.0 |164 |49.2 |359 |172
PfCM 0.0 0.0 0.0 094 | .070 | .308 |4.77 | 6.13 | 284 |5.25 |6.54 |30.8
Total 32,1 |536 |444 41.8 |114 |771 |684 402 |204 |72.8 |42.0 |219
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Table 13: LAMBIC Results for Injection Error Dispersion (11.6 m/s, 2° 3-0) with
A2 maneuver. Results are given in m/s. Mean AV is listed as W, standard deviation (1-6)
as o, and the 99" percentile level is listed under 99%.

MVR Injection Injection + Injection + Injection +
OD Error Execution Error Execution Error +

OD Error
1) G | 99% n 6 | 99% n G | 99% u G | 99%
Al 695 | .431 [795 |6.95 |.431 |7.95 |6.95 |.444 |8.00 [6.95 | .444 |8.00
P1 114 1402 (206 {114 [431 [206 |114 1403 207 {114 {403 |2038
A2 0 0 0 209 {177 732 [539 [492 |22.0 [596 |5.16 |224
Pf 13.8 |.938 {159 |139 |.963 |162 | 140 [1.08 [16.8 {140 [1.10 |16.8
PfCM |0 0 0 096 |.070 |.309 | 949 | .674 |3.03 |.958 |.676 |3.02
Total 32.1 | 536 (444 [344 [563 [48.2 |38.6 |879 |63.6 |39.2 |8.80 |64.3

Table 14: LAMBIC Results for Injection Error Dispersion (11.6 m/s, 2° 3-6) with P2

maneuver. Results are given in m/s. Mean AV is listed as W, standard deviation (1-0) as
o, and the 99" percentile level is listed under 99%.

MVR Injection Injection + Injection + Injection +
OD Error Execution Error Execution Error +

OD Error
w c 99% U c 99% n o 99% u c 99%
Al 6.95 | .431 |7.95 |6.95 |.431 [795 |695 |.444 |8.00 |6.95 | .444 |8.00
P1 114 |4.02 |206 |114 {402 {206 {114 |403 {20.7 |11.4 |4.03 |20.8
P2 0 0 0 082 |.061 |.259 |.140 |.123 | .552 |.166 | .135 | .601
Pf 13.8 1.938 | 159 {232 (992 [564 |13.8 |1.04 |16.5 |23.3 |9.98 |56.9
PICM |0 0 0 096 |.070 |.309 |.941 | .658 | 299 |222 (226 |11.2
Total 32.1 536 |444 |41.7 {11.1 |753 | 332 |561 |46.2 |44.0 | 125 |82.2

Table 15: LAMBIC Results for Injection Covariance. Results are given in m/s. Mean
AV is listed as |, standard deviation (1-0) as ©, and the 99" percentile level is listed

under 99%.
MVR Injection Injection + Injection + Injection +
OD Error Execution Error Execution Error +
OD Error
U c 99% v c 99% u c 99% n g 99%
Al 695 |.316 |7.69 |695 |.316 [|7.69 |696 |.338 |7.73 |6.96 |.338 |7.73
P1 113 |3.05 {184 {113 [3.05 |184 |11.3 |3.06 |184 |11.3 {3.06 | 18.4
Pf 13.8 |.709 {154 [234 }10.1 {562 446 |312 151 |[48.3 |334 |159
PfCM |[0.0 0.0 0.0 971 | .071 |.306 [4.74 | 587 |27.9 |514 {629 |314
Total 32.1 1406 (415 {418 {108 (756 |67.7 |36.6 | 189 |71.8 {38.8 |203
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Table 16: LAMBIC Results for Injection Covariance with A2 maneuver. Results are
given in m/s. Mean AV is listed as W, standard deviation (1-0) as o, and the 99"
percentile level is listed under 99%.

MVR Injection Injection + Injection + Injection +
OD Error Execution Error Execution Error +

OD Error
U o 99% w c 99% i c 99% u c 99%
Al 6.95 | .316 {7.69 [695 |.316 |7.69 [6.96 |.338 |7.73 |6.96 |.338 |7.73
P1 11.3 |3.05 (184 [11.3 |3.05 (184 |11.3 |3.06 |184 |11.3 |3.06 | 184
A2 0 0 0 210 | 1.73 {7.15 {530 [4.57 |20.5 |5.85 [4.86 |21.2
Pf 13.8 {.709 | 154 139 |.737 | 156 |14.0 | .876 |16.2 |14.0 |.893 | 16.3
PICM |0 0 0 097 [.071 |.306 |.956 |.663 |2.95 |.963 | .669 | 297
Total 32.1 {4.06 [415 (344 443 |448 | 385 |7.22 (593 {39.1 |7.34 |60.0

Table 17: LAMBIC Results for Injection Covariance with P2 maneuver. Results are
given in m/s. Mean AV is listed as W, standard deviation (1-6) as G, and the 99"
percentile level is listed under 99%.

MVR Injection Injection + Injection + Injection +
OD Error Execution Error Execution Error +

OD Error
Y o 99% u o 99% v c 99% w ] 99%
Al 6.95 | .316 [7.69 |695 |.316 [|7.69 |6.96 |.338 [7.73 {696 |.338 |7.73
P1 11.3 [3.05 | 184 {113 {305 {184 |11.3 |3.06 | 184 |11.3 |3.06 |184
P2 0 0 0 081 [.061 |.259 |.138 |.114 | .508 | .164 | .128 | .560
Pf 13.8 |.710 | 154 |233 |10.2 (563 |13.8 | .817 |15.8 [23.6 | 103 |57.8
PECM |0 0 0 097 |.071 |.306 |.938 |.643 |2.92 |229 (228 |11.0
Total 32.1 |4.06 415 [41.8 [10.8 |[754 |33.2 |427 [43.1 {443 |[124 | 84.1

CONCLUDING REMARKS

This analysis culminates in estimating the 99" percentile of AV required for the
phasing loop legs of two trajectories for the MAP mission. These estimates are subject to
several caveats, most notably the reliance on linear approximation. Furthermore, the Pf
and PfCM maneuver targets were taken to be the nominal lunar-swingby aimpoint. The
resulting estimates of required AV are subject to the assumption that achieving this
aimpoint is a good approximation to the MAP maneuver strategy.

The trajectory after the Moon has been ignored. No attempt has been made to

estimate the AV required for any maneuvers after the lunar swingby. There has been no
determination as to whether or not a given sample from the Monte Carlo simulation
achieves a lissajous orbit. Furthermore, this analysis makes no attempt to estimate the
AV required to achieve a lissajous orbit after the lunar swingby.
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For the five-loop, the results show that a maneuver at A2 or P2 is desirable for

keeping the 99™ percentile AV low. The three-loop case did not show such sensitivity
because it had no more than one perigee passage without a maneuver. Clearly, the five-
loop case cannot achieve the performance of the three-loop case without an additional
maneuver. Furthermore, this maneuver is considerably less expensive if placed at an

apogee, viz. A2, as opposed to a perigee, viz. P2.

Table 18: LAMBIC Lunar B-Plane Delivery Standard Deviations (1-6) for Injection

Covariance.
MVR Injection Injection + Injection + Injection +
OD Error Execution Error | Execution Error
+ OD Error
B*R 0.00 km 775 km 45.2 km 49.3 km
BT 0.00 km 1.39 km 65.0 km 69.1 km
LTF 4,540 s 4570s 4940 s 4,980 s
SR 1.81 mrad 1.88 mrad 2.35 mrad 2.44 mrad
ST 39.8 mrad 42.6 mrad 55.6 mrad 58.2 mrad
C3 1.32e-2 km?/s? 1.43e-2 km?*/s? 1.99¢-2 km?/s? 2.10e-2 km?/s?

Table 19: LAMBIC Lunar B-Plane Delivery Standard Deviations (1-0) for Injection
Covariance with A2 maneuver.

MVR Injection Injection + Injection + Injection +
. OD Error Execution Error | Execution Error
+ OD Error

B°R 0.00 km 77 km 6.84 km 6.94 km
BT 0.00 km 1.39 km 10.2 km 10.4 km
LTF 4,540 s 4,550 s 4,580 s 4,590 s
SR 1.81 mrad 2.45 mrad 4.68 mrad 5.03 mrad
SeT 39.8 mrad 39.8 mrad 39.9 mrad 40.0 mrad
C3 1.32e-2 km®/s? 1.38e-2 km?*/s* 1.68e-2 km?*/s* 1.74e-2 km?*/s*

Table 20: LAMBIC Lunar B-Plane Delivery Standard Deviations (1-6) for Injection
Covariance with P2 maneuver.

MVR Injection Injection + Injection + Injection +
OD Error Execution Error | Execution Error
+ OD Error

B*R 0.00 km 775 km 6.64 km 18.0 km
BT 0.00 km 1.39 km 9.98 km 27.3 km
LTF 4,540 s 4,560 s 4,570 s 4,630 s
SR 1.81 mrad 1.88 mrad 1.82 mrad 1.91 mrad
ST 39.8 mrad 42.2 mrad 40.0 mrad 42.6 mrad
C3 1.32e-2 km*/s* 1.41e-2 km?*/s* 1.33e-2 km?/s* 1.44e-2 km?/s*
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APPENDIX

DPTRA] K-File Modification

The DPTRAJ K-file had to be modified to account for the synchronization of
maneuvers with perigees. The modification is straightforward, considering how
individual perturbations affect the target B-plane parameters.

P VLI VLI VLI VLI LI
av,, dv av, dv, dv, av
ﬂ&al + j—b—&pl + ﬂ&pf
dtal di ol tpf

where b is a vector of the B-plane target parameters; vy, v,;, and v are the velocity
vectors at the maneuver times; t,, and t; denote the times of the P1 and Pf maneuvers,
respectively. The K-matrices that DPTRAJ writes to the K-file are the partial derivatives
between velocity and B-plane targets.

The requirements that the P1 and Pf maneuvers be placed at perigees are
expressed as follows:

dt
5ta1 = —alavinj
dvinj
dt dt dt
& =—2 v +—Lov  +—L5t
pl d inj d al d al
Ving Vat al
dt dt dt dt dt dt dr
S =—H v +—2Lgy +—L& +—ZL sy +—Lo +—L& +—Lov
»f d inj d al al d a2 pl d pl d p2
Vini al al a2 pl Lo Vo2

Note that these equations express the variation in perigee times due to variations in
maneuver time and AV. Substituting these, as constraints on the times of maneuvers,
back into the first equation, yields:
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@

db dt, + db dtpl + db dtpf + db dtpl dt,,

dav

inj

+ db dtpf dtal

dt, a’vmj dtp1 dvmj dz‘p1 dt,, dvmj
L b dt,, dt, N db dt, dt, dt,

dt, dv,,

dt,, dr, dv,,

dt, dt, dv,, di, di, dt, dv,

db b di, , b dt,, L. dt, di, I
al
| dv,  dt,dv, dt,dv, di,d, dv,
i dt dt
db + db_dt, V) db_ db at, ov,, +
v, dt, dv, dv,, dt,dv,
db db di, : db 5v,,
dv, diydv,| " oy

inj

These six coefficient matrices for the velocity increments may then be used as
replacement K-matrices. The altitude constraint is handled without loss of generality by
considering it as one of the target parameters in the vector b.

LAMBIC Delivery Covariances

The delivery standard deviations reported in the “Injection + Execution Error +
OD Error” columns of Tables 10, 18, and 19 are taken from the covariance matrices
quoted below in lower diagonal form. The row-order , reading top to bottom, is
B*R(km), BT (km), LTF (days), S*R (radians), S*T (radians), and C3 (km%s?).

Three-Loop for Injection Covariance (injection+maneuver+OD errors.

4.60010E+02

2.59487E+02 1.61951E+03
2.64392E+02 -1.42087E+02 2.55005E+05
~1.02918E-03 1.25991E-03 -1.34326E+00 1.91634E-05
7.37874E-04 1.91690E-02 6.96660E-01 6.64345E-05 4.58277E-04
~3.95513E-03 1.99451E-03 -2.50407E+00 4.30570E-05 1.68732E-04
Five-Loop for Injection Covariance.
2.4272e+03
8.7658e+02 4.7738e+03
4.9198e+03 6.3116e+02 2.4824e+07
6.8699%~-03 5.4289%-03 3.6631e+00 5.9508e-06
-5.4620e-02 9.8834e-02 1.2962e+02 7.4628e-05 3.3866e-03
1.9949%e-03 -5.7947e-02 -4.995%e+01 -3.1534e-05 =-1.1865e-03
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Five-Loop for Injection Covariance with A2 maneuver.
4

.8214e+01
2.0827e+01 1.0859%e+02
-5.5448e+02 3.0504e+01 2.1040e+07
-2.4965e-04 -9.1431e-04 6.1763e+00 2.5324e-05
-4.3858e-03 2.7374e-03 1.7394e+02 -3.9297e-06 1.5999%e-03
5.6144e~04 -3.2077e-03 -5.2300e+01 4.7168e-05 -5.7159%e-04 3.0192e-04

Injection Covariance

MAP MISSION 18 APRIL 2001

COVARIANCE MATRIX OF TECO INJECTION CONDITIONS BASED ON -3 SIGMA SENSITIVITIES
X Y Z
FEET FEET FEET

X FEET 0.11916690E+10 -0.56301814E+06 -0.28119734E+06

Y FEET ~0.56301814E+06 0.12767127E+08 0.46452044E+06

Z FEET -0.28119734E+06 0.46452044E+06 0.80101014E+07
VX FT/SEC 0.11494819E+05 ~0.63863203E+03 -0.58089530E+04
VY FT/SEC -0.42820439E+03 0.59201057E+04 0.24453652E+03
vz FT/SEC -0.14129451E+07 0.79088917E+03 0.89430986E+04
THETA LP DEGREES 0.31790254E+04 -0.15083154E+01 -0.75353125E+00
PSI LP DEGREES 0.23994196E+03 0.16904696E+01 0.23692084E-01

VX vY vz
FT/SEC FT/SEC FT/SEC

X FEET 0.11494819E+05 -0.42820439E+03 -0.14129451E+07

Y FEET -0.63863203E+03 0.59201057E+04 0.79088917E+03

Z FEET -0.58089530E+04 0.24453652E+03 0.89430986E+04
VX FT/SEC 0.95635289E+02 -0.27066217E+02 -0.29768523E+02
VY FT/SEC -0.27066217E+02 0.33453510E+04 0.15188399E+00
vz FT/SEC -0.29768523E+02 0.15188399E+00 0.50315726E+04
THETA LP DEGREES -0.51418243E-01 -0.33268598E-02 0.15235504E+02
PSI LP DEGREES 0.15368232E+00 -0.19005207E+02 -0.28228162E+00

Positive x axis is parallel to the projection of the vehicle's instantaneous velocity vector
onto a plane perpendicular to the radius vector. Z is positive away from the earth along
the radius vector. Y completes the right-handed orthogonal system. The origin is at the
nominal vehicle present position point and the system is inertial.

B-Plane Description

Planet or satellite approach trajectories are typically described in aiming plane
coordinates referred to as “B—plane” coordinates (see Figure 4).[7] The B-plane is a plane
passing through the planet center and perpendicular to the asymptote of the incoming
trajectory (assuming 2 body conic motion). The "B-vector" is a vector in that plane, from
the planet center to the piercing-point of the trajectory asymptote. The B-vector specifies
where the point of closest approach would be if the target planet had no mass and did not
deflect the flight path. Coordinates are defined by three orthogonal unit vectors, S, T,
and R, with the system origin at the center of the target body. The S vector is parallel to
the incoming spacecraft V,, vector (approximately the velocity vector at the time of entry
into the gravitational sphere of influence). T is arbitrary, but is typically specified to lie
in the ecliptic plane (the mean plane of the Earth’s orbit), or in a body-equatorial plane.
Finally, R completes an orthogonal triad with S and T
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Figure 4: B-Plane Coordinate System

Trajectory errors in the B-plane are often characterized by a one—-0 dispersion
ellipse, shown in Figure 4. SMAA and SMIA denote the semi-major and semi—minor
axes of the ellipse; 0 is the angle measured clockwise from the T axis to SMAA. The
dispersion normal to the B-plane is typically given as a one-G time-of-flight error, where
time-of-flight specifies what the time to swingby (periapsis) would be from some given
epoch if the magnitude of the B-vector were zero. Alternatively, this dispersion is
sometimes given as a one-0 distance error along the § direction, numerically equal to the
time-of-flight error multiplied by the magnitude of the V,, vector.
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